o0,

€50
X

N’

ICF

20

Proceedings of the Informatics Conference Vol. 11 No. 22 (2025): Requirements Engineering

Methodologies ISSN: 2477-5894

The Importance of Comprehensive Software
Requirements: Developing an Effective
Software Requirements Specification (SRS)
Document

Aziz Zahran?, Setyawan Widyarto?
Universitas Budi Luhur, Jakarta®, Universiti Selangor, Malaysia?
swidyarto@unisel.edu.my?

Abstract—The Software Requirement Specification (SRS) is a
comprehensive document that outlines the functional and non-
functional requirements of a software application. It serves as a
contract between the client and the development team, detailing
what the software must accomplish and the constraints under
which it must operate. The SRS includes descriptions of the
software’s intended purpose, user interfaces, system interactions,
performance standards, and security considerations. It is crucial
for ensuring that all stakeholders have a clear and shared
understanding of the project’s goals and deliverables. By
providing a detailed blueprint, the SRS minimizes the risk of
misunderstandings and errors during the development process,
ensuring that the final product meets the client’s needs and
expectations. Additionally, the SRS serves as a reference point
for validation and verification activities, helping to maintain
project scope and quality standards throughout the software
development lifecycle.

Keyword Client, Deliverables, Development
Functional requirements, Non-functional
Software Requirement Specification (SRS)

team,
requirements,

I. INTRODUCTION

The Software Requirement Specification (SRS) is a critical
document in the software development lifecycle, serving as
the foundational blueprint for any software project. It
meticulously outlines both functional and non-functional
requirements, providing a clear and comprehensive description
of what the software should achieve and the constraints within
which it must operate. The SRS is designed to ensure that all
stakeholders, including clients, developers, and project
managers, have a unified understanding of the project’s
objectives, scope, and deliverables. This document not only
sets the expectations for the development team but also acts as

a reference point for future project phases, including design,
implementation, testing, and maintenance.

In addition to defining the software’s intended functionality,
the SRS addresses various aspects such as user interfaces,
system interactions, performance criteria, and security
measures. It plays a crucial role in risk management by
identifying potential challenges and constraints early in the
development process, thereby reducing the likelihood of costly
errors and misunderstandings. By providing a detailed and
structured approach to requirement gathering and
documentation, the SRS helps in aligning the project’s
outcomes with the client’s needs and expectations. Ultimately,
the SRS is indispensable for ensuring that the final software
product is of high quality, meets the specified requirements,
and delivers value to its users.

Il. LITERATURE REVIEW

The importance of Software Requirement Specifications
(SRS) in software development has been widely recognized in
academic and professional literature. Kurniawan et al., n.d.
(2023) highlights that an SRS is essential for establishing a
mutual understanding between stakeholders and the
development team. It defines the functional and non-
functional requirements clearly, which is crucial for successful
project execution. Githa Ananta (2022), a well-drafted SRS
reduces ambiguity and ensures that the final product meets the
users’ needs and expectations. This is supported by studies
showing that projects with detailed SRS documents have
higher success rate (Susilowati & Kusuma, 2019).

A significant body of research emphasizes the role of SRS in
risk management. Aprilia & Achsin Samas (2024) argues that
early identification of potential risks and challenges through a
comprehensive SRS can mitigate the chances of project

mailto:swidyarto@unisel.edu.my

8.5
480

./
.“.'

ICF

failure. The detailed documentation helps in anticipating
possible issues and planning accordingly. This perspective is
reinforced by Nasrullah et al., n.d.(2023), who state that an
SRS serves as a critical tool for managing scope creep and
ensuring that the project remains on track. Their findings
suggest that projects with thorough requirement specifications
are more likely to stay within budget and on schedule.

Moreover, the clarity provided by an SRS aids in improving
communication among stakeholders. Kurniawan et al., n.d.-b,
(2023) point out that an SRS acts as a communication bridge,
facilitating clear and precise discussions between clients and
developers. This improved communication leads to a better
understanding of user requirements and expectations.
Similarly,(Nugraha, n.d. 2022) highlight that effective
communication ~ through an SRS can prevent
misunderstandings and ensure that the development team fully
comprehends the project’s goals. This aspect is critical for
aligning the project outcomes with client needs.

The use of SRS also extends to enhancing project validation
and verification processes. According to Kotonya and
Sommerville (1998), an SRS provides a benchmark against
which the software can be tested. This ensures that the
developed software aligns with the specified requirements and
performs as expected. The authors argue that without a well-
defined SRS, it is challenging to carry out effective testing and
validation. Pohl (2010) further elaborates that an SRS
facilitates traceability, allowing for systematic verification of
each requirement throughout the development process (Hadi
Waryanto, 2012).

Finally, the evolution of SRS practices reflects the changing
dynamics of software development methodologies. Agile and
iterative development models have introduced new approaches
to requirement documentation. As noted by Beck (2000),
while traditional SRS documents are detailed and
comprehensive, Agile methodologies favor more flexible and
dynamic requirement gathering techniques. However, even in
Agile environments, the core principles of clearly defining
requirements and maintaining stakeholder alignment remain
vitaL, supports this view by suggesting that user stories in
Agile can serve a similar purpose to traditional SRS, ensuring
that requirements are well-understood and implemented
effectivel (Baskoro et al., 2021).

I1l. SYSTEM ARCHITECTURE

The architecture of the Software Requirement Specification
(SRS) system is designed to ensure robustness, scalability, and
ease of maintenance. At the core of the system is a multi-tier
architecture comprising the presentation layer, application
layer, and data layer. The presentation layer, implemented
using modern web technologies such as React.js or Angular,
provides a user-friendly interface for stakeholders to interact
with the system. This layer is responsible for rendering the

21

Proceedings of the Informatics Conference Vol. 11 No. 22 (2025): Requirements Engineering

Methodologies ISSN: 2477-5894

SRS documents, gathering user inputs, and ensuring
responsive design across various devices. It communicates
with the application layer through RESTful APIs, ensuring a
clear separation of concerns.

The application layer forms the backbone of the SRS system,
handling the business logic and processing user requests. Built
using a combination of Node.js and Express.js, this layer is
designed to be highly modular, allowing for easy integration
of additional features and services. It manages the creation,
modification, and validation of SRS documents, implementing
business rules and workflows necessary for comprehensive
requirement gathering. The application layer also incorporates
authentication and authorization mechanisms to ensure secure
access control. For enhanced performance and scalability,
microservices architecture can be employed, where each
service is independently deployable and can communicate via
lightweight protocols such as gRPC or HTTP/2.

The data layer is responsible for persistent storage and
retrieval of SRS documents and associated metadata.
PostgreSQL is chosen as the primary database management
system due to its robustness and support for complex queries
and transactions. Additionally, an Object-Relational Mapping
(ORM) tool like Sequelize is used to facilitate database
interactions, ensuring a clean and maintainable codebase. To
ensure data integrity and availability, the database is set up
with replication and backup strategies. Furthermore, for
efficient full-text search capabilities, Elasticsearch can be
integrated, allowing users to perform quick and precise
searches across SRS documents. The overall system
architecture is designed to support continuous integration and
continuous deployment (CI/CD) pipelines, enabling automated
testing, deployment, and monitoring to maintain high system
reliability and performance.

Structure of Software Requirements Specification

« Intradution

m

= Erverall Desscription

0z

03 -+ Sywtom Features and Requirements

04

= Extormat Intesfucs Bequinsments

* Prelisinacy Sehadula and Budget

Fig.1 Structure Software Requirement Spesification
The diagram illustrates the structure of a Software
Requirements Specification (SRS), which comprises five key
sections. The Introduction provides an overview of the
document, including its purpose, scope, definitions, and
references. The Overall Description outlines the system
context, including product perspective, functionality, primary
users, constraints, assumptions, and dependencies. The System
Features and Requirements section details all functional

8.5
480

./
.“.'

ICF

requirements, describing the inputs, processes, and outputs
associated with each feature. The External Interface
Requirements specify the necessary external interfaces,
including user, hardware, software, and communication
interfaces, ensuring proper interaction with external
components. Finally, the Preliminary Schedule and Budget
offers initial estimates of the project timeline and budget,
including development milestones and cost projections. This
well-organized SRS structure ensures that all critical aspects
of the software project are clearly documented, reducing the
risk of misunderstandings and ensuring that the final system
meets user needs.

IV. METHODS

To develop a comprehensive Software Requirements
Specification (SRS) document, the PICO framework can be
effectively utilized, ensuring a systematic and thorough
approach. The first component, Population (P), involves
identifying the key stakeholders such as clients, end-users,
project managers, and developers. This step is crucial for
tailoring the requirements to meet the diverse needs and
expectations of those who will interact with or be affected by
the software. Developing detailed user personas helps in
understanding the different perspectives and specific
requirements of the user population, ensuring that the final
product is user-centric.

Next, the Intervention (1) phase involves implementing
various requirement elicitation techniques like interviews,
surveys, workshops, and brainstorming sessions to gather
comprehensive information from stakeholders. Additionally,
creating prototypes and mockups of the proposed system
features and user interfaces allows stakeholders to visualize
the system early on, facilitating feedback and ensuring that
requirements are well-understood and agreed upon. This
hands-on approach helps in refining the requirements and
aligning them with stakeholder expectations.

The Comparison (C) component focuses on analyzing
alternative solutions and benchmarking against similar
systems or industry standards. By evaluating different
technologies, frameworks, and design options, the most
effective solution for the project can be determined. This
comparison helps set realistic and achievable goals for the
software project. Finally, the Outcome (O) phase involves
documenting the gathered and analyzed requirements in a
detailed and structured SRS document, including both
functional and non-functional requirements. Validation and
verification activities, such as peer reviews and requirement-
based testing, ensure the accuracy, completeness, and
feasibility of the documented requirements. Obtaining formal
stakeholder approval is the final step, confirming that the
requirements align with the project goals and stakeholder
needs. Using the PICO framework, the requirement gathering
and analysis process becomes more structured and focused,

22

Proceedings of the Informatics Conference Vol. 11 No. 22 (2025): Requirements Engineering

Methodologies ISSN: 2477-5894

enhancing the overall quality and success of the software
development project.

V. DISCUSSIONS

The development of comprehensive software requirements is a
cornerstone of successful software engineering. Software
Requirements Specification (SRS) documents play a vital role
in bridging the gap between stakeholders’ expectations and the
technical implementation by the development team. A well-
crafted SRS ensures that all stakeholders have a unified
understanding of what the software should achieve, thus
minimizing the risk of misunderstandings and project failure.

A key aspect of developing effective software requirements is
stakeholder engagement. Requirements must be gathered from
a diverse range of stakeholders, including end-users, clients,
project managers, and developers. This ensures that the
software will meet the needs of its users and fulfill the
business objectives. Techniques such as interviews, surveys,
workshops, and brainstorming sessions are essential for
collecting detailed and accurate requirements. Moreover,
developing user personas and use cases helps in visualizing
the needs and interactions of different user groups, which is
crucial for creating user-centric software.

The analysis of requirements involves not only understanding
what the software needs to do (functional requirements) but
also the conditions under which it must operate (non-
functional requirements). Functional requirements define
specific behaviors or functions, such as data processing, user
interactions, and system operations. Non-functional
requirements, on the other hand, specify criteria such as
performance, security, usability, and scalability. Both types of
requirements are critical for ensuring that the software
performs well in real-world conditions and delivers a
satisfactory user experience.

One of the challenges in defining software requirements is
dealing with change. Requirements can evolve due to changes
in business processes, user needs, or technological
advancements. Thus, it is essential to have a flexible and
iterative approach to requirement management. Agile
methodologies, for instance, promote continuous stakeholder
feedback and iterative development, allowing for adjustments
to requirements throughout the project lifecycle. This
adaptability helps in addressing changes promptly and
maintaining alignment with stakeholder expectations.

Validation and verification of requirements are crucial to
ensure their correctness and feasibility. Validation involves
checking that the requirements accurately reflect the needs and
expectations of stakeholders. Techniques such as prototyping
and user testing are effective for validating requirements.
Verification, on the other hand, ensures that the requirements
are feasible and can be implemented within the given

NP
€50
k7
N’

ICF

constraints. This includes peer reviews, requirement-based
testing, and feasibility studies. Together, validation and
verification activities help in delivering a reliable and high-
quality software product.

In conclusion, the process of developing software
requirements is fundamental to the success of a software
project. It involves thorough stakeholder engagement, detailed
analysis of functional and non-functional requirements, and
flexible management of changes. Additionally, rigorous
validation and verification ensure that the requirements are
accurate and feasible. A well-documented SRS serves as a
blueprint for the development team, guiding the project to
meet its objectives and deliver value to its users.

VI. CONCLUSION

The development of comprehensive software requirements is
essential for the success of any software project. The Software
Requirements Specification (SRS) document serves as a
critical tool in this process, ensuring that all stakeholders have
a clear and unified understanding of the project’s goals,
functionalities, and constraints. By engaging stakeholders
through various requirement gathering techniques such as
interviews, surveys, workshops, and brainstorming sessions,
diverse perspectives are incorporated, leading to more
accurate and user-centric requirements.

A thorough analysis of both functional and non-functional
requirements is crucial for creating a robust and reliable
software system. Functional requirements outline the specific
actions the software must perform, while non-functional
requirements define the conditions under which the software
operates. Addressing both aspects ensures the software not
only meets its intended purpose but also performs well in real-
world scenarios.

Adopting a flexible and iterative approach to requirement
management, such as Agile methodologies, allows for
continuous stakeholder feedback and the ability to adapt to
changes throughout the project lifecycle. This adaptability is
essential for maintaining alignment with evolving business
processes and user needs.

Validation and verification activities, including prototyping,
user testing, peer reviews, and feasibility studies, are critical
for ensuring the accuracy, completeness, and feasibility of the
requirements. These activities help in mitigating risks,
reducing misunderstandings, and ensuring that the final
software product aligns with stakeholder expectations and
delivers high quality.

In conclusion, a well-crafted SRS document, developed
through a structured and thorough process, is fundamental to
the successful execution of a software project. It serves as a

23

Proceedings of the Informatics Conference Vol. 11 No. 22 (2025): Requirements Engineering

Methodologies ISSN: 2477-5894

guiding blueprint for the development team, ensuring that the
project stays on track, meets its objectives, and ultimately
provides value to its users.

REFERENCES

Aprilia, T., & Achsin Samas, M. (2024). Implementasi
Software Requirement Specification dan Waterfall
Model pada SIPODANG berbasis Android. Indonesian
Journal on Software Engineering (IJSE), 10(1).
Retrieved from
http://ejournal.bsi.ac.id/ejurnal/index.php/ijse

Baskoro, F., Andrahsmara, R. A., Darnoto, B. R. P., &
Tofan, Y. A. (2021). A systematic comparison of
software requirements classification. IPTEK The
Journal for Technology and Science, 32(3), 184.
https://doi.org/10.12962/j20882033.v32i3.13005

Githa Ananta, V. (2022). Analisis kebutuhan perangkat
lunak sistem informasi back office (Studi kasus
Hublang dan Teknik Perumdam Among Tirto Kota
Batu). Retrieved from
https://jurnal.poliwangi.ac.id/index.php/session

Hadi Waryanto, N. (2012). Software Requirements
Specification SINAPRA berbasis sistem informasi
terpadu. Jurnal limiah, 7(2).

Kurniawan, Y., & Paulus Lucky T. I. (n.d.-a). Software
Requirement Specification Sistem Informasi
Manajemen dan Geografis Pemetaan Sumber Daya
Air. Kurawal: Jurnal Teknologi, Informasi dan
Industri. Retrieved from
https://jurnal. machung.ac.id/index.php/kurawal

Kurniawan, Y., & Paulus Lucky T. I. (n.d.-b). Software
Requirement Specification Sistem Informasi
Manajemen dan Geografis Pemetaan Sumber Daya
Air. Kurawal: Jurnal Teknologi, Informasi dan
Industri. Retrieved from
https://jurnal. machung.ac.id/index.php/kurawal

Nasrullah, M., Dwi Angresti, N., Harits Suryawan, S., &
Faizal Mahananto, D. (n.d.). Requirement
engineering terhadap virtual team pada proyek
software engineering. Journal of Advances in
Information and Industrial Technology (JANT), 3(1).

Nugraha, D. W. (n.d.). Software Requirement dalam
Membangun Sistem Informasi Pelayanan Publik.

&5
0'5 (4]

)
.&O

ICF

Susilowati, M., & Kusuma, A. A. (2019). Software
Requirement Specification ~ Sistem Informasi
Manajemen. SMARTICS Journal, 5(1), 27-33.
https://doi.org/10.21067/smartics.v5i1.3444

24

Proceedings of the Informatics Conference Vol. 11 No. 22 (2025): Requirements Engineering

Methodologies ISSN: 2477-5894

