Vol. 8 No. 16 (2022), Informatics: State of the Art - Software Design 12

Comparative Analysis on Software Development
Life Cycle (SDLC) Models

G.A Monang Lumban Gaol*and Setyawan Widyarto?

Program Studi Magister llmu Komputer, Universitas Budi Luhur
JI. Ciledug Raya, RT.10/RW.2, Petukangan Utara, Kec. Pesanggrahan, Kota Jakarta Selatan, Daerah Khusus Ibukota

Jakarta 12260

12111600371@student.budiluhur.ac.id
2swidyarto@gmail.com

Abstract - There are some different software development
models that are widely accepted as a software development
lifecycle model. Selecting the right life cycle model is the most
valuable process while a developer has to complete within a
given time deadline and estimated cost. Model selection
depends on the type of project as per customer requirement.
Although all these models have their own benefits and
drawbacks, the combination of all these methodologies is
adopted in the existing commercial software development
lifecycles.

Keywords — Combining Technique, Comparative Analysis,
SDLC, SDL Models, Software Development.

I. INTRODUCTION

There are four journals that have been reviewed by
taking the topic of comparative analysis between software
development life cycle models with the aim of providing a
choice of models that are suitable for use by software
developers according to the project to be worked on in such
a way that software development can run more effectively
and in accordance with wants or needs of system users.
There are various kinds of software development models
used from the four reviewed journals which generally use
models that are quite popular for software developers, such
as waterfall, ESD, agile methodology, spiral model,
component based, etc.

In performing comparative analysis, among the authors,
some performed through direct comparisons and others
performed comparisons after performing the combining
technique.

From the comparative analysis that has been done, the
authors generally conclude that the selection model
depends on the type of project as per customer requirement.
And in essence, selecting the correct life cycle model is the
most valuable process while the developer has to complete
within a given time deadline and estimated cost.

1. METHOD

A. Comparative Analysis by Aminu and Ogwueleka

This paper attempts to discuss the different available
Software Development Lifecycle (SDLC) models and the
scenarios in which these models are used. All popular

approaches to SDLC are being discussed, both structured,
object-oriented, and agile methods. The paper also
highlights the benefits and drawbacks of the models
discussed as well as the practical applications. This will
help project managers decide what SDLC model would suit
their project and also help developers and testers
understand the basics of the development model being used
for their project.

Waterfall model is simple and easy to use and
understand, because of the rigidity of the model, easy to
manage. Each phase has specific results and a review
process, that is one phase at a time is processed and
completed. Works well for smaller projects where there is
a very good understanding of requirements and the process
are well documented. The main drawback of waterfall
model is that the design has to be completely specified
before programming begins and it takes a long time from
the completion of the system proposed in the analysis phase
and the delivery of the system. Therefore, it is not suitable
for the complex project because it cannot accommodate the
changing requirement; adjusting scope during the life cycle
can end a project.

In Iterative Model, some functionality in the life cycle
can be developed quickly and early. Results are fast and
frequently obtained. During iteration, risks are identified
and resolved; and each iteration milestone is easily
managed. Progress is measured, while the operational
product is delivered with each increment. Issues,
challenges & risks identified from each increment can be
used/applied to the next increment. It supports changing
requirements. Software is produced early during the life
cycle, which facilitates customer evaluation and feedback.
Better suited to large and mission-critical projects. It is the
main drawback is it needs more attention to management,
the management complexity is more. The progress of the
project is highly dependent on the phase of risk analysis.
Highly skilled resources are required for risk analysis. Not
suitable for smaller projects.

The spiral model accommodates changing requirements,
and users have an early view of the system. Same as in the

Vol. 8 No. 16 (2022), Informatics: State of the Art - Software Design 13

iterative model, the management is more complex and not
suitable for small projects. A very complex process, the
spiral may go on indefinitely with require also required
excessive documentation for a large number of
intermediate stages. It is not possible to know the end of the
project early. The spiral model has been very influential in
helping people think about iteration in software processes
and introducing the risk-driven approach to development.
In practice, however, the model is rarely used.

V-model works well for smaller projects where there is
a very good understanding of requirements. Simple and
easy to use and understand, because of the rigidity of the
model, easy to manage—each phase has specific results and
a review process. It is a disadvantage is a High risk and
uncertainty. Once an application has been tested, it's hard
to go back and change the functionality. This shows that it
is not a good model for projects that are complex and
object-oriented.

Similarly, Big band model is a very simple model, which
requires little or no planning and very few resources. Gives
flexibility to developers which serve as a good learning aid
to newcomers or students. Same as with Vmodel, it is not a
good model for projects that are complex and object-
oriented and can be very expensive.

Furthermore, the Agile model is easy to use, provides
flexibility to developers. It promotes cross-training and
teamwork where functionality can be developed rapidly
and demonstrated. The requirements for resources are
minimal, very suitable for requirements fixed or changing
that delivers limited early work solutions. It is a good
model for ever-changing environments. It requires an
overall plan, an agile leader, and Agile Project
Management (PM) practice without which it won't work.
More risk of sustainability, maintainability, and
extensibility. This shows it is not suitable for the handling
of complex dependencies. Individual dependency is very
high since minimal documentation is generated.
Technology transfer to new team members may be quite
challenging due to lack of documentation.

Additionally, In RAD Model, Model Changing
requirements may be accommodated. It is possible to
measure progress as in the Iterative model. It has minimal
time for development and increases component reusability.
It depends on high modeling skills and technically strong
team members to identify business requirements, which
required highly qualified developers /designers. This shows
that it is not applicable as a cost to cheaper projects.

Finally, the Prototype Model increased user involvement
compare to other models; the users will have a better
understanding of the system that is being developed
because a functioning model of the system is displayed.
Reduces time and cost as it is possible to detect defects
much earlier. Quicker user feedback for better solutions is

available by identifying missing and confusing functions.
There is a risk of insufficient requirement analysis due to
too much prototype dependence. In practice, this
methodology can increase the system's complexity as the
system's scope can extend beyond the original plans. The
effort invested in the building of prototypes could be
excessive. So, a prototype is useful when a customer or
developer is not sure of the requirements, or of algorithms,
efficiency, business rules, response time, etc. Prototyping
is not a standalone, complete development methodology,
but rather an approach to be used in the context of a full
methodology (such as incremental, spiral, etc.).
Incremental software development is better than a waterfall
approach for most business, e-commerce, and personal
systems. By developing the software incrementally, it is
cheaper and easier to make changes in the software as it is
being developed. Compared to the waterfall model,
incremental development has some important benefits such
as the cost of accommodating changing customer
requirements is reduced as the amount of analysis and
documentation that has to be redone is much less than what
is required with the waterfall model; It is easier to get
customer feedback on the work done during development
than when the system is fully developed, tested, and
delivered; and more rapid delivery of useful software is
possible even if all the functionality has not been included.
Customers can use and gain value from the software earlier
than it is possible with the waterfall model.

B. Combining Teschnique Analysis by Pradhan

Combined technique towards the event innovations of a
brand new software package style Life cycle considering
numerous existing model specifications, their constraints
and limits.

While there are several reasons to use organic process
development on a project, that specialize in one or 2 crucial
edges can facilitate optimize efforts. These goals can guide
later selections like a way to structure user involvement, a
way to amendment plans. In response to user feedback, and
the way to prepare the project. Notwithstanding what goals
are targeted on, it's crucial to speak the explanations for
strategic selections to each management and therefore the
development team. Evolutionary development may be a
completely different approach of puzzling over managing
computer code comes. Most teams can in all probability
expertise a number of the pain that typically accompanies
amendment; therefore it's better to start out with a little trial
1stAnd then attempt a bigger project.

C. Comparative Analysis by Chopra and Nautiyal
This paper tells the efficiency of various CBSE models
which are useful for the software project.

CBSD approach is based on the idea to develop software
systems by selecting appropriate off-the-shelf components
and then to assemble them with a welldefined software
architecture. The purpose of CBSD is to develop large

Vol. 8 No. 16 (2022), Informatics: State of the Art - Software Design 14

systems, incorporating previously developed or existing
components, thus cutting down on development time and
costs.

CBSE can also be used to reduce maintenance associated
with the upgrading of large systems. It is assumed that
common parts in a software application only need to be
written once and reused rather than being rewritten every
time a new application is developed.Component primarily
based software package development approach relies on
the thought to develop software package systems by
choosing acceptable ready to wear components and so to
assemble them with a well-defined package design.

CBSE encompasses two parallel engineering activities,
domain engineering and component-based development
(CBD). Domain engineering explores the application
domain with the specific intent of finding functional,
behavioral, and data components that are candidates for
reuse and places them in reuse libraries. CBD elicits
requirements from the customer and selects an appropriate
architectural style to meet the objectives of the system to
be built. This new software development approach is very
different from the traditional approach in which software
systems can only be implemented from scratch. These
commercial off-the shelf (COTS) components can be
developed by different developers using different
languages and different platforms.

D. Camparison Analysis by Polishwala and Shastri

The aim of this paper is to analysis some methodologies
that gives comparison on SDLC models by studied
available, tools, techniques and methodologies of SDLC
models.

FIL Covipamesos STUoY OF Vaosoes Moo

Parmneser Process Wanortall wremestal | Spined model RAD T Az

Prosetype

Highly oo Hexdle Fleabsk:

111. CONCLUSION

Aminu and Ogwueleka conclude that model selection
depends on the type of project as per customer requirement.
Though these models all have their benefits and drawbacks,
the fusion of all these methodologies is incorporated in the
existing commercial software development world.

Pradhan said that the most salient and consistent edges
of the ESD model are its ability to induce early, accurate

well shaped feedback from users and therefore the ability
to reply thereto feedback.

Chopra and Nautiyal concluded that the key factor was
based on the reasoning of the researcher. On the basis of
analyzing is that Knot Model is the best model for the
software project.

Polishwala and Shastri conclude that there are many
SDLC models such as waterfall, prototype, spiral,
incremental, RAD, Agile etc. used in various organizations.
Each model has its own pros and cons. In software industry,
all this methodologies are used, so here the comparison of
all these models is provided basis of certain features like —
requirement specification, cost, simplicity expertise, risk
involvement, flexibility, maintenance, etc. from
comparison through these basic features helps developers
to select appropriate model for particular project. Selecting
the correct life cycle model is most valuable process while
developer has to complete within a given time deadline and
estimated cost. This study make SDLC selection process
easy and effective for the system.

REFERENSI

[1] Aminu, Halima, & Ogwueleka, F. (2020). A Comparative study of
System Development Life Cycle Models.

[2] Pradhan, Debasis, Dalai, Sasank Sekhar, & Behera, Mandakini
Priyadarsini (2020). A Comparative Study on Evolutionary Model
for Software Development

[3] Chopra, Mr. Sandeep, Sharma, M., & Nautiyal, Lata (2017).
Comparative Study of Different Models in Component Based
Software Engineering

[4] Polishwala, Megha V., & Shastri, Dr. Amit kumar (2021).
Comparative Analysis of Various Software Development

