
1

Comparative Analysis on Software Development

Life Cycle (SDLC) Models
G.A Monang Lumban Gaol1 and Setyawan Widyarto2

Program Studi Magister Ilmu Komputer, Universitas Budi Luhur

Jl. Ciledug Raya, RT.10/RW.2, Petukangan Utara, Kec. Pesanggrahan, Kota Jakarta Selatan, Daerah Khusus Ibukota

Jakarta 12260

12111600371@student.budiluhur.ac.id
2swidyarto@gmail.com

Abstract - There are some different software development

models that are widely accepted as a software development
lifecycle model. Selecting the right life cycle model is the most

valuable process while a developer has to complete within a

given time deadline and estimated cost. Model selection

depends on the type of project as per customer requirement.

Although all these models have their own benefits and

drawbacks, the combination of all these methodologies is

adopted in the existing commercial software development

lifecycles.

Keywords — Combining Technique, Comparative Analysis,
SDLC, SDL Models, Software Development.

I. INTRODUCTION

There are four journals that have been reviewed by

taking the topic of comparative analysis between software

development life cycle models with the aim of providing a

choice of models that are suitable for use by software

developers according to the project to be worked on in such

a way that software development can run more effectively

and in accordance with wants or needs of system users.

There are various kinds of software development models

used from the four reviewed journals which generally use

models that are quite popular for software developers, such

as waterfall, ESD, agile methodology, spiral model,

component based, etc.

In performing comparative analysis, among the authors,

some performed through direct comparisons and others

performed comparisons after performing the combining

technique.

From the comparative analysis that has been done, the

authors generally conclude that the selection model

depends on the type of project as per customer requirement.

And in essence, selecting the correct life cycle model is the

most valuable process while the developer has to complete

within a given time deadline and estimated cost.

II. METHOD

A. Comparative Analysis by Aminu and Ogwueleka

This paper attempts to discuss the different available

Software Development Lifecycle (SDLC) models and the

scenarios in which these models are used. All popular

approaches to SDLC are being discussed, both structured,

object-oriented, and agile methods. The paper also

highlights the benefits and drawbacks of the models

discussed as well as the practical applications. This will

help project managers decide what SDLC model would suit

their project and also help developers and testers

understand the basics of the development model being used

for their project.

Waterfall model is simple and easy to use and

understand, because of the rigidity of the model, easy to

manage. Each phase has specific results and a review

process, that is one phase at a time is processed and

completed. Works well for smaller projects where there is

a very good understanding of requirements and the process

are well documented. The main drawback of waterfall

model is that the design has to be completely specified

before programming begins and it takes a long time from

the completion of the system proposed in the analysis phase

and the delivery of the system. Therefore, it is not suitable

for the complex project because it cannot accommodate the

changing requirement; adjusting scope during the life cycle

can end a project.

In Iterative Model, some functionality in the life cycle

can be developed quickly and early. Results are fast and

frequently obtained. During iteration, risks are identified

and resolved; and each iteration milestone is easily

managed. Progress is measured, while the operational

product is delivered with each increment. Issues,

challenges & risks identified from each increment can be

used/applied to the next increment. It supports changing

requirements. Software is produced early during the life

cycle, which facilitates customer evaluation and feedback.

Better suited to large and mission-critical projects. It is the

main drawback is it needs more attention to management,

the management complexity is more. The progress of the

project is highly dependent on the phase of risk analysis.

Highly skilled resources are required for risk analysis. Not

suitable for smaller projects.

The spiral model accommodates changing requirements,

and users have an early view of the system. Same as in the

Vol. 8 No. 16 (2022), Informatics: State of the Art - Software Design 12

2

iterative model, the management is more complex and not

suitable for small projects. A very complex process, the

spiral may go on indefinitely with require also required

excessive documentation for a large number of

intermediate stages. It is not possible to know the end of the

project early. The spiral model has been very influential in

helping people think about iteration in software processes

and introducing the risk-driven approach to development.

In practice, however, the model is rarely used.

V-model works well for smaller projects where there is

a very good understanding of requirements. Simple and

easy to use and understand, because of the rigidity of the

model, easy to manage–each phase has specific results and

a review process. It is a disadvantage is a High risk and

uncertainty. Once an application has been tested, it's hard

to go back and change the functionality. This shows that it

is not a good model for projects that are complex and

object-oriented.

Similarly, Big band model is a very simple model, which

requires little or no planning and very few resources. Gives

flexibility to developers which serve as a good learning aid

to newcomers or students. Same as with Vmodel, it is not a

good model for projects that are complex and object-

oriented and can be very expensive.

Furthermore, the Agile model is easy to use, provides

flexibility to developers. It promotes cross-training and

teamwork where functionality can be developed rapidly

and demonstrated. The requirements for resources are

minimal, very suitable for requirements fixed or changing

that delivers limited early work solutions. It is a good

model for ever-changing environments. It requires an

overall plan, an agile leader, and Agile Project

Management (PM) practice without which it won't work.

More risk of sustainability, maintainability, and

extensibility. This shows it is not suitable for the handling

of complex dependencies. Individual dependency is very

high since minimal documentation is generated.

Technology transfer to new team members may be quite

challenging due to lack of documentation.

Additionally, In RAD Model, Model Changing

requirements may be accommodated. It is possible to

measure progress as in the Iterative model. It has minimal

time for development and increases component reusability.

It depends on high modeling skills and technically strong

team members to identify business requirements, which

required highly qualified developers /designers. This shows

that it is not applicable as a cost to cheaper projects.

Finally, the Prototype Model increased user involvement

compare to other models; the users will have a better

understanding of the system that is being developed

because a functioning model of the system is displayed.

Reduces time and cost as it is possible to detect defects

much earlier. Quicker user feedback for better solutions is

available by identifying missing and confusing functions.

There is a risk of insufficient requirement analysis due to

too much prototype dependence. In practice, this

methodology can increase the system's complexity as the

system's scope can extend beyond the original plans. The

effort invested in the building of prototypes could be

excessive. So, a prototype is useful when a customer or

developer is not sure of the requirements, or of algorithms,

efficiency, business rules, response time, etc. Prototyping

is not a standalone, complete development methodology,

but rather an approach to be used in the context of a full

methodology (such as incremental, spiral, etc.).

Incremental software development is better than a waterfall

approach for most business, e-commerce, and personal

systems. By developing the software incrementally, it is

cheaper and easier to make changes in the software as it is

being developed. Compared to the waterfall model,

incremental development has some important benefits such

as the cost of accommodating changing customer

requirements is reduced as the amount of analysis and

documentation that has to be redone is much less than what

is required with the waterfall model; It is easier to get

customer feedback on the work done during development

than when the system is fully developed, tested, and

delivered; and more rapid delivery of useful software is

possible even if all the functionality has not been included.

Customers can use and gain value from the software earlier

than it is possible with the waterfall model.

B. Combining Teschnique Analysis by Pradhan

Combined technique towards the event innovations of a

brand new software package style Life cycle considering

numerous existing model specifications, their constraints

and limits.

While there are several reasons to use organic process

development on a project, that specialize in one or 2 crucial

edges can facilitate optimize efforts. These goals can guide

later selections like a way to structure user involvement, a

way to amendment plans. In response to user feedback, and

the way to prepare the project. Notwithstanding what goals

are targeted on, it's crucial to speak the explanations for

strategic selections to each management and therefore the

development team. Evolutionary development may be a

completely different approach of puzzling over managing

computer code comes. Most teams can in all probability

expertise a number of the pain that typically accompanies

amendment; therefore it's better to start out with a little trial

1stAnd then attempt a bigger project.

C. Comparative Analysis by Chopra and Nautiyal

This paper tells the efficiency of various CBSE models

which are useful for the software project.

CBSD approach is based on the idea to develop software

systems by selecting appropriate off-the-shelf components

and then to assemble them with a welldefined software

architecture. The purpose of CBSD is to develop large

Vol. 8 No. 16 (2022), Informatics: State of the Art - Software Design 13

3

systems, incorporating previously developed or existing

components, thus cutting down on development time and

costs.

CBSE can also be used to reduce maintenance associated

with the upgrading of large systems. It is assumed that

common parts in a software application only need to be

written once and reused rather than being rewritten every

time a new application is developed.Component primarily

based software package development approach relies on

the thought to develop software package systems by

choosing acceptable ready to wear components and so to

assemble them with a well-defined package design.

CBSE encompasses two parallel engineering activities,

domain engineering and component-based development

(CBD). Domain engineering explores the application

domain with the specific intent of finding functional,

behavioral, and data components that are candidates for

reuse and places them in reuse libraries. CBD elicits

requirements from the customer and selects an appropriate

architectural style to meet the objectives of the system to

be built. This new software development approach is very

different from the traditional approach in which software

systems can only be implemented from scratch. These

commercial off-the shelf (COTS) components can be

developed by different developers using different

languages and different platforms.

D. Camparison Analysis by Polishwala and Shastri

The aim of this paper is to analysis some methodologies

that gives comparison on SDLC models by studied

available, tools, techniques and methodologies of SDLC

models.

III. CONCLUSION

Aminu and Ogwueleka conclude that model selection

depends on the type of project as per customer requirement.

Though these models all have their benefits and drawbacks,

the fusion of all these methodologies is incorporated in the

existing commercial software development world.

Pradhan said that the most salient and consistent edges

of the ESD model are its ability to induce early, accurate

well shaped feedback from users and therefore the ability

to reply thereto feedback.

Chopra and Nautiyal concluded that the key factor was

based on the reasoning of the researcher. On the basis of

analyzing is that Knot Model is the best model for the

software project.

Polishwala and Shastri conclude that there are many

SDLC models such as waterfall, prototype, spiral,

incremental, RAD, Agile etc. used in various organizations.

Each model has its own pros and cons. In software industry,

all this methodologies are used, so here the comparison of

all these models is provided basis of certain features like –

requirement specification, cost, simplicity expertise, risk

involvement, flexibility, maintenance, etc. from

comparison through these basic features helps developers

to select appropriate model for particular project. Selecting

the correct life cycle model is most valuable process while

developer has to complete within a given time deadline and

estimated cost. This study make SDLC selection process

easy and effective for the system.

REFERENSI

[1] Aminu, Halima, & Ogwueleka, F. (2020). A Comparative study of

System Development Life Cycle Models.

[2] Pradhan, Debasis, Dalai, Sasank Sekhar, & Behera, Mandakini

Priyadarsini (2020). A Comparative Study on Evolutionary Model

for Software Development

[3] Chopra, Mr. Sandeep, Sharma, M., & Nautiyal, Lata (2017).

Comparative Study of Different Models in Component Based

Software Engineering

[4] Polishwala, Megha V., & Shastri, Dr. Amit kumar (2021).

Comparative Analysis of Various Software Development

Vol. 8 No. 16 (2022), Informatics: State of the Art - Software Design 14

