

Diagram 1.

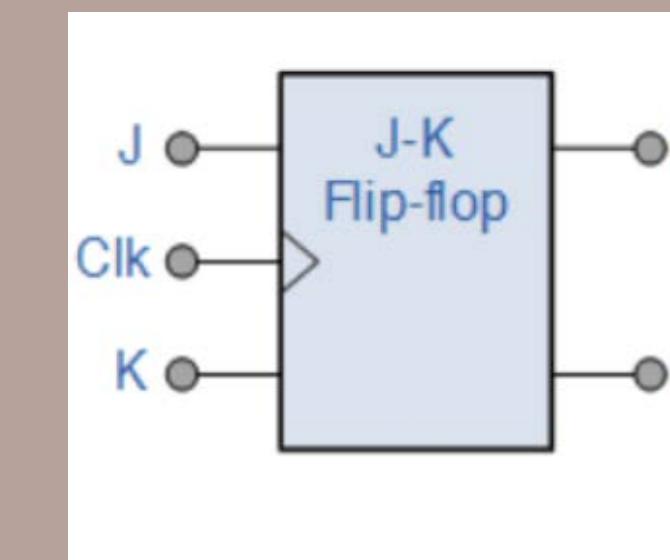
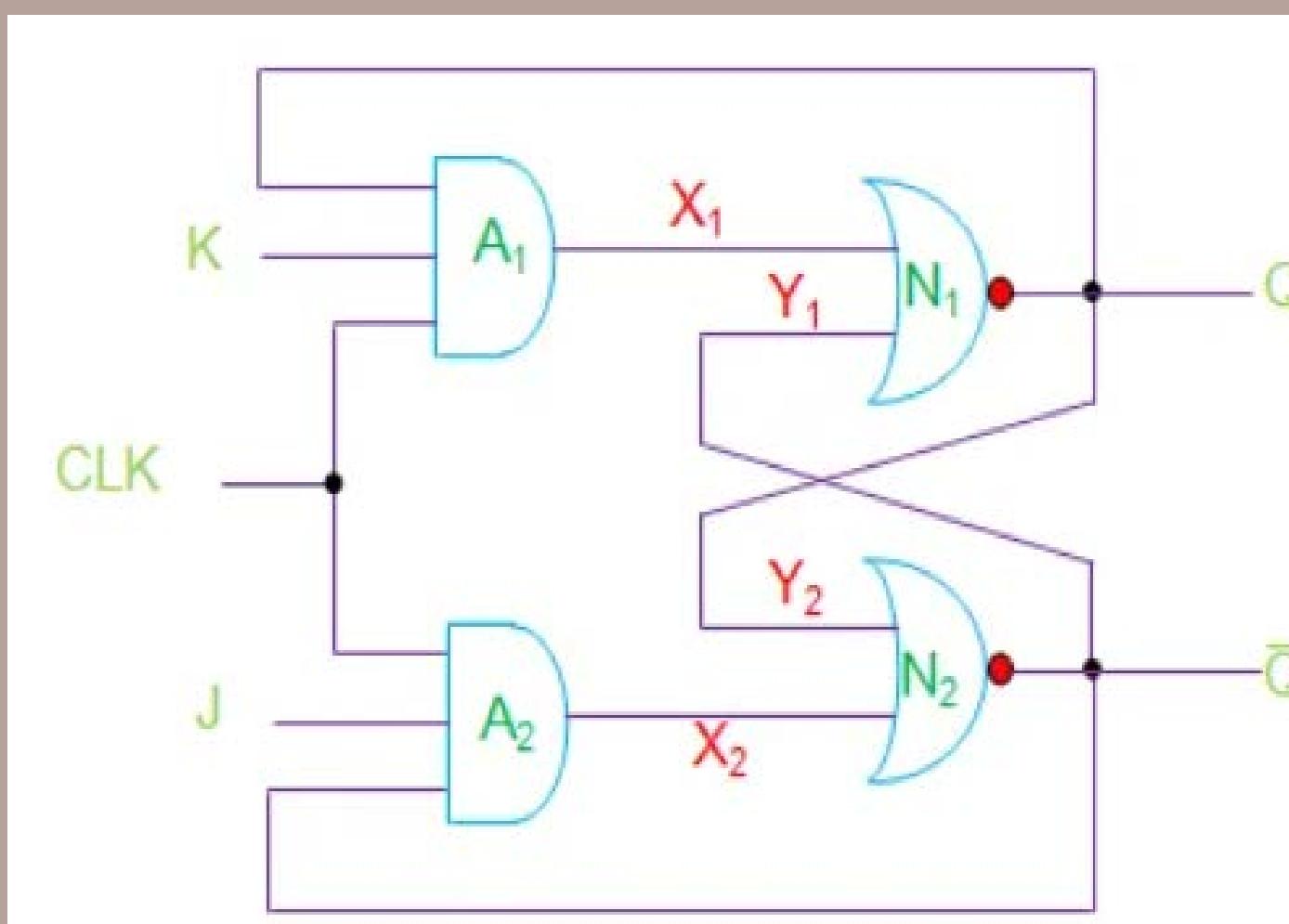
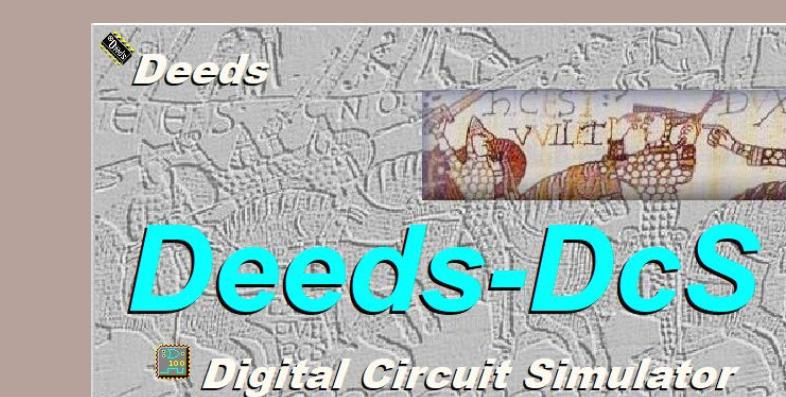


Diagram 2.




Diagram 3.

Trigger	Inputs		Output				Inference
	J	K	Present State		Next State		
CLK			Q	Q-bar	Q	Q-bar	
✗	x	x	-	-	-	-	Latched
↑	0	0	0	1	0	1	No Change
↑	0	1	1	0	1	0	
↑	1	0	0	1	0	1	Reset
↑	1	1	1	0	0	1	
↑	0	1	0	1	1	0	Set
↑	1	0	1	0	0	1	
↑	1	1	1	0	0	1	Toggles
↑	0	1	0	1	1	0	

Diagram 4.

INTERNATIONAL COMMUNITY FORUM (ICF)

Learn The Analysis Of A JK-Flip-Flop With Deeds

Kamaputra, kama.putra.kk@gmail.com

Faculty of Communication, Visual Art and Computing
Universiti Selangor

RESEARCH OBJECTIVE

This lab introduces the concept of sequential logic circuits and their basic working mechanisms. Students are expected to understand to design a sequential logic circuit using JK-Flip-Flop and to implement the designed circuit.

MECHANISME OF A JK-FLIP-FLOP

In order to have an insight over the working of JK flip-flop, it has to be realized in terms of basic gates similar to that in [Diagram 2](#) which expresses a positive-edge triggered JK flip-flop using AND gates and NOR gates. Here, it can be observed that the output Q and the clock pulse are logically anded using the AND gate 1, A1, whereas the output \bar{Q} is anded using the clock pulse and the input J. (using AND gate 2, A2). Further the output of A1 is fed as one of the inputs (X_1) to the NOR gate 1, N1 whose other input (Y_1) is connected to output \bar{Q} . Similarly NOR gate 2, N2 has its two inputs (X_2 and \bar{Y}_2) as the output of A2 and output Q (respectively). Initially let $J = K = 0$, $Q = 0$ and $\bar{Q} = 1$. Now consider the appearance of positive-edge of the first clock pulse at the CLK pin of the flip-flop. This results in $X_1 = 0$ and $X_2 = 0$. Then the output of N1 will become 0 as $X_1 = 0$ and $\bar{Q} = 1$; while the output of N2 will become 1 as $X_2 = 0$ and $Q = 0$. Thus one gets $Q = 0$ and $\bar{Q} = 1$. However if one considers the initial states to be $J = K = 0$, $Q = 1$ and $\bar{Q} = 0$, then $X_1 = X_2 = 0$ which results in $Q = 1$ and $\bar{Q} = 0$. This indicates that the state of flip-flop outputs Q and \bar{Q} remains unchanged for the case of $J = K = 0$.

Now assume that $J = 0$, $K = 1$, $Q = 0$ and $\bar{Q} = 1$. Analyzing on the same grounds, one gets $X_1 = X_2 = 0$ which further results in $Q = 0$ (and hence $\bar{Q} = 1$). For the same case if Q and \bar{Q} were 1 and 0, respectively, then $X_1 = 1$ and $X_2 = 0$ which would result in $Q = 0$ (and hence $\bar{Q} = 1$).

This implies that if $J = 0$ and $K = 1$, then the flip-flop resets ($Q = 0$ and $\bar{Q} = 1$).

Next if $J = 1$, $K = 0$, $Q = 1$ and $\bar{Q} = 0$, then $X_1 = X_2 = 0$ which results in $Q = 1$ (and thus $\bar{Q} = 0$). For the same case if $Q = 0$ and $\bar{Q} = 1$, then $X_1 = 0$, $X_2 = 1$ which leads to $\bar{Q} = 0$ and hence Q is forced to value 1. This means that for the case of $J = 1$ and $K = 0$, flip-flop output will always be set i.e. $Q = 1$ and $\bar{Q} = 0$.

Similarly for $J = 1$, $K = 1$, $Q = 1$ and $\bar{Q} = 0$ one gets $X_1 = 1$, $X_2 = 0$ and $Q = 0$ (and hence $\bar{Q} = 1$); and if Q changes to 0 and \bar{Q} to 1, then $X_1 = 0$, $X_2 = 1$ which forces \bar{Q} to 0 and hence Q to 1. This indicates that for $J = K = 1$, flip-flop outputs toggle meaning which Q changes from 0 to 1 or from 1 to 0, and these changes are reflected at the output pin Q accordingly.

REFERENCES

- [1] Manual Pengguna, (2022). Aplikasi Pendidikan dan Reka Bentuk Elektronik Digital (S. Widjarto, Ed. & Trans.; 1st ed.). International Community Forum (ICF).
- [2] <https://www.digitalelectronicsdeeds.com/>
- [3] <https://www.electrical4u.com/jk-flip-flop/>